
Problem 1

The electric potential of a disk can be expressed in the following equation:

V =
1

4πεo

∫
ρsdA

′

|R−R′|
(1)

For this case the vectors are the same as in HW 2, as is the dA′. The integrals
go from 0→ a for r′ and 0→ 2π for φ′. The integrals comes to the following:

V =
ρs
2εo

(√
a2 + z2 − |z|

)
(2)

Problem 2

For this question we need to use the following relation

E = −∇V (3)

So since the potential from problem 1 is only in the z direction this leaves just
the partial with z left in the gradient. Taking the partial derivative gives the
following:

E =
ρs
2εo

[
1− z√

a2 + z2

]
âz (4)

Problem 3

This is in the textbook (somewhat). Note that the primary difference between
your solution and that of the example is that the infinite line charge ρl produces
fields which resemble those of a trivial cylinder. That is, you now have 1/r
dependence for the E-field instead of 1/r2, and the appearance of a natural log
relationship instead of 1/r when comparing potentials.

Problem 4

For this problem, we have a non-uniform permittivity and are asked to find the
capacitance of a cylindrical capacitor. Fortunately, this permittivity varies only
with r and not with φ or z! Thus we can start off with the electric field from
Gauss’s law for a cylinder:

E =
Q

2πεLr
âr (5)

We assume there is a charge of +Q on the inner surface and −Q on the outer
surface. We then integrate for the potential.

V = −
a∫

b

E · dl (6)
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For my notation b refers to the outer radius and a refers to the inner one.
Plugging in our equation for E, and noting that dl = drâr and ε = εoεr (i.e., ε
is now a function of r).

V = − Q

2πεoL

a∫
b

dr

(2 + 4
r )r

(7)

Evaluating:

V =
Q

4πεoL
ln(

b+ 2

a+ 2
) (8)

Then using C = Q/V we get the following for C:

C =
4πεoL

ln( b+2
a+2 )

(9)

Now we can plug in the values of the inner radius, outer radius, and length to
obtain the capacitance: 13.26 pF (not µF, as suggested by the Cheng solutions -
JBS suspects that the length was multiplied by 1000 instead of divided, thanks
to ca. 1989 calculator technology).

Problem 5

In this problem is it is important to note that the sphere is isolated, meaning
we will take our potential of zero to be at infinity (JBS notes that if the sphere
were “grounded” – in the electrical engineering sense and not the Malcolm in
the Middle childhood punishment sense – then zero potential could be assigned
at its surface). We can once again use Gauss’s law to find the E field to set up
the integral for the potential, being spherical surface and total charge Q. Our
dl is the same as above too.

V = −
b∫

∞

Q

4πεr2
dr = −

b∫
b+d

Q

4πεr2
dr −

b+d∫
∞

Q

4πεor2
dr (10)

We can now evaluate both integrals and use the C = Q/V to get the following:

C = 4πεo

(
(b+ d)2

d
+ χE

b2 + bd

d

)
(11)

Note that Justin Lieffers has reasonable confidence in the above simplified so-
lution. More likely, you obtained something that is more similar in appearance
to what is derived in Dr. cheng’s solutions as follows:
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Problem 6

For this problem it is important to note that a constant potential is being
maintained across the plates so thus the charge is not the same in each region
but the potential across is. We will use this as a starting point. Since the
potential is equal in each region, so is the electric field, giving the following:

Ey =
−Vo
d

(12)

Now, since the charge on the plates is not the same in each region, the D-field
will not be the same in each region. We will the following relation to obtain
each of them:

D = εE (13)

Note that we aren’t even mentioning P - Dr. Cheng did not request for us to
find it! Thus,

D1 =
−εVo
d

ây (14)

D2 =
−εoVo
d

ây (15)

Lastly, we can apply the D-field boundary condition at the top plate to obtain
the surface charge in each region. This gives the following:

ρs1 =
εVo
d

(16)

ρs2 =
εoVo
d

(17)

Note that on the bottom plate, these surface charges are equal in magnitude
and opposite in sign.
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