
Problem 1

For this problem we will start off with the Ampere’s Law in terms of the E field
and H fields.

∇×H = σE + ε
∂E

∂t
(1)

We then take the curl of the equation above and use a vector identity and
fact that the curl of E is defined by Faraday’s Law to get the following:

∇∇ ·H−∇2H = −(σ + ε
∂

∂t
)µ
∂H

∂t
(2)

Now the first term of the last equation goes to zero and we can distribute
the right hand side to get the final result:

∇2H = σµ
∂H

∂t
+ εµ

∂2H

∂t2
(3)

In order to get this result for the E-field is the same procedure and you get
the following:

∇2E = σµ
∂E

∂t
+ εµ

∂2E

∂t2
(4)

Problem 2

This one is pretty straight forward.

Problem 3

Waves can be represented by complex exponents knows as phasors. In phasor
form, the electric and magnetic fields for a wave are:

E(r, t) = e−j(k·r−ωt)E0 H(r, t) = e−j(k·r−ωt)H0

Substituting these forms of the electric and magnetic field into the source free
Maxwells equations gives the phasor forms for the equations.
Gauss’ Laws:

∇ ·E = 0 ∇ ·H = 0(
∇e−j(k·r−ωt)

)
·E0 = 0

(
∇e−j(k·r−ωt)

)
·H0 = 0

−ik ·
(
e−j(k·r−ωt)E0

)
= 0 − jk

(
·e−j(k·r−ωt)H0

)
= 0

k ·E = 0 k ·H = 0

Faraday’s Law:

∇×E = −µ ∂
∂t

H

1



(
∇e−j(k·r−ωt)

)
×E0 = −µ ∂

∂t
e−j(k·r−ωt)H0

−ik×
(
e−j(k·r−ωt)E0

)
= −jµωe−j(k·r−ωt)H0

k×E = ωµH

Ampere’s Law:

∇×H = ε
∂

∂t
E(

∇e−j(k·r−ωt)
)
×H0 = µ

∂

∂t
e−j(k·r−ωt)E0

−ik×
(
e−j(k·r−ωt)H0

)
= iεωe−j(k·r−ωt)E0

k×H = −ωεE

Figure 1: Cheng Solution for P.8-4

Problem 4

Part a

The wavelength and the frequency can be easily calculated from the coefficients
of the z and t terms of the wave respectively:

λ =
2π

k
=

2π

1/
√

3
f =

ω

2π
=

108

2π

λ = 10.9 [m] f = 15.9 [MHz]
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Part b

The dielectric constant is determined from the wave speed:

ug =
c
√
εr

=
ω

k

εr =

(
kc

ω

)2

Substituting the appropriate values gives:

εr =

(
(1/
√

3)3 · 108

108

)2

= 3

Part c

I determine polarization by sketching the x and y components and determining
the motion that way. As ax is positive and decreasing, ay is negative and
increasing (in the negative direction). This can only happen with left handed
polarization. Since the magnitudes of each component are different, the wave is
then left handed elliptically polarized

Part d

In order to find the magnetic field we must first find the characteristic impedance:

η =

√
µ

ε
=

η0√
εr

=
120π√

3
[Ω].

We know that the magnetic field is orthogonal to both the direction of motion
of the wave and to the electric field, hence its direction is given by the cross
product of these two elements. We also know that it is decreased in magnitude
from the electric field by a factor of 1/η, and that the fields are given by the
real component of the phasor form. Therefore the magnetic field intensity is:

H = Re

{
1

η
az ×E

}

H(z, t) =

√
3

120π

[
sin

(
108t− z√

3

)
ax + cos

(
108t− z√

3

)
ay

]
[Am

−1
]
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Figure 2: Cheng Solution for P.8-6

Problem 5

Part a.

This material is not in the ”good conductor” region, so we have to invoke the
full force of the Helmholtz Equation to obtain attenuation and phase constants,
the intrinsic impedance, the phase velocity, wavelength, and skin depth.

α = ω

√
µε

2

[√
1 +

( σ
ωε

)
− 1

]1/2
α = 84 [Npm

−1
]

β = ω

√
µε

2

[√
1 +

( σ
ωε

)
+ 1

]1/2
β = 300π[radm

−1
]

ηc =

√
µ

ε− σ
ω i

=

√
µ(

ε2 +
(
σ
ω

)2)1/4 e i2 tan−1( σεω )

ηc = 41.8e0.0283πj

up =
ω

β
= 33.3 · 106 [m/s] λ =

2π

β
= 0.67[cm] δ =

1

α
= 1.19 [cm]
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Part b.

The amplitude of the wave is given by 0.1e−αy A/m. The distance required for
the field to decrease to 0.01 A/m is:

0.1e−αy = 0.01

y =
1

α
ln(10) = 2.74 [cm]

Part c.

From the calculated values above we can write the magnetic field intesnity as a
function of position and time:

H(y, t) = 0.1e−αy sin
(
1010πt− βy − π/3

)
At y = 0.5 [m], the magnetic field intensity is:

H(0.5, t) = 0.1e−42 sin
(
1010πt− 150π − π/3

)
Since 150π is a multiple of 2π, it does not change the sin function, and reducing
all the other terms gives:

H(0.5, t) = 5.75 · 10−20 sin
(
1010πt− π/3

)
The electric field can be found using cross products and the characteristic
impedance similarly to a previous problem, but using the imaginary in place
of the real part due to the wave being represented by a sin function:

E(0.5, t) = Im {ηcH(0.5, t)× ay}

E(0.5, t) = 2.41 · 10−18 sin
(
1010πt− π/3 + 0.0283π

)
[Vm

−1
]
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